III-V Electronics

The overall target of FBH’s research activities in the field of III-V electronics is to push the limits of electronic devices in terms of efficient power generation at high frequencies, high voltages, and short switching times. The frequency spectrum ranges from fast power electronics through the mobile communication bands in the lower GHz range to sub-millimeter waves. All activities are based on III-V semiconductor technology; they presently encompass the following major topics:

  • Microwave power amplifiers based on GaN for the use in mobile base stations –  the focus is on concepts reducing power losses (supply modulation) and enhancing frequency agility (BST varactors).
  • Digital power amplifiers – the FBH develops novel digital amplifier architectures for the wireless infrastructure. Long-term target is the complete digital transmitter.
  • Terahertz components & systems –  the focus is on integrated circuits up to the 250 GHz band so far, using indium phosphide (InP) bipolar transistors (HBTs). A transferred-substrate process is applied including a wafer-scale InP-on-BiCMOS heterointegration option. With these circuits, compact integrated frontend-modules for radar, sensor and communication systems can be realized.
  • Exploring plasmonic effects for THz detection and emission – these phenomena promise device operation well beyond the classical frequency limits and thus open up possibilities for electronic components in the 1 THz range. We use GaN as semiconductor for these developments.
  • GaN-based switching transistors & Schottky diodes for high voltages – for high-efficiency power converters with high clock speed, low weight, and volume. They are well-suited for a great variety of applications, e.g., in the field of electro mobility.
  • Microplasmas & laser drivers – GaN transistors are also used to develop compact microplasma sources for, e.g., activation of surfaces and high-speed high-current drivers for laser diodes that are integrated into FBH pulse laser sources.

Besides the III-V semiconductor technologies, these research activities require the corresponding advanced simulation, modelling, circuit design, and measurement expertise.