ErBeStA

FBH is a partner in the three-year research project "Error-Proof Bell-State Analyzer (ErBeStA)", which is funded by the EU. The aim of this demanding project is to realize an analyzer for Bell states. Bell states are a concept from quantum information technology and describe states of quantum entangled particle pairs. An error-free analyzer for Bell states is a key component for optical quantum computers and quantum communication over long distances, e.g. via fiber optic cables. Its realization would be a milestone for all information technologies. High-precision time measurement, tap-proof communication and quantum cloud computing would also benefit from the development of such a component.

  • Microscope image of a resonator system
    [+] Microscope image of a resonator system in the production process after production of the supporting membrane for the waveguides. The resonator consists of a waveguide coupled to a ring. The thin membrane supporting the waveguide shimmers green because of its thickness.
  • Section of a finished resonator system
    [+] Section of a finished resonator system. Here: Light microscopic top view of the coupling point between waveguide and ring.
  • Section of a finished resonator system
    [+] Section of a finished resonator system. Here: Cross section in the scanning electron microscope showing the arrangement in a thin membrane.
  • Resonator systems made of silicon oxide of different sizes
    [+] Resonator systems made of silicon oxide of different sizes on a silicon support wafer before separation.

The network of seven European research institutions in Denmark, Great Britain, Austria and Germany combines new developments in the field of quantum optics and nanophotonics for this purpose. The strong non-linearities of Rydberg atoms or single quantum emitters coupled to optical micro-sounders are to be combined with microscopically small optical waveguide devices. Precise control of the light propagation on the scale of the wavelength of the light is the prerequisite for the targeted technological breakthrough.

FBH contributes its expertise in the field of process technology to this highly topical research subject. Optical microresonators and waveguides are produced in the cleanroom using modern lithography and etching processes. By using stepper lithography, structures with smallest dimensions of 400 nm can be produced. For even smaller dimensions, an electron beam lithography system is available that allows structure dimensions of down to 50 nm. The structures generated in a photoresist are then transferred to the optical material using adapted plasma etching processes. For this project, the use of low-damping silicon oxides is being investigated as an optical material, with which losses can be kept to a minimum. A particular challenge is to remove the tiny structures from the wafer so that the light guided through the wafer is not attenuated and a sufficiently strong connection between the optical components and the wafer is maintained. The component should be so mechanically stable that it can be used not only in laboratory set-ups, but also in commercial assemblies.

The components developed at FBH are then extensively optically characterized and tested in close cooperation with the project partners.