Micro-integrated semiconductor laser modules for precision quantum optical experiments in space

M. Krüger1, A. Bawamia1, Ch. Kürbis1, W. Lewoczko-Adamczyk1, C. Pyrlik1, A. Wicht1, G. Erbert1, A. Peters1,2 and G. Tränkle1
1Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin, Germany
2Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin, Germany

Motivation

Quantum sensor applications in μ-gravity
- time keeping, exploration, inertial navigation
- test of fundamental physics
- e.g. STE-QUEST

Laser requirements
- robust, compact, reliable, energy-efficient, space-compatible
- spectral availability: NIR to UV
- spectral stability: MHz to sub-kHz linewidth, free running
- optical power: up to 1 W

Typical performances
- DFB laser
 - intrinsic linewidth: < 30 kHz
 - output power: > 150 mW
- ECDL
 - intrinsic linewidth: < 3 kHz
 - output power: > 30 mW
- DFB laser with feedback1
 - intrinsic linewidth: 15.7 Hz
 - output power: > 50 mW

Motivation

Diode lasers: complete value chain ...

Typical performances
- DFB laser
 - intrinsic linewidth: < 30 kHz
 - output power: > 150 mW
- ECDL
 - intrinsic linewidth: < 3 kHz
 - output power: > 30 mW
- DFB laser with feedback1
 - intrinsic linewidth: 15.7 Hz
 - output power: > 50 mW

Packaging
- hermetically sealed Kovar housing with optical and electrical feedthroughs

Technology transfer

Compact UV-laser system for 267 nm
- Local Oscillator + Pre-Amplifier (1070 nm)
 - extended cavity concept
 - very narrow free running linewidth
- Phase Modulator + Amplifier (1070 nm)
 - control bandwidth > 1.5 MHz
 - 750 mW output (fiber coupled)
- Single-Pass Doubling (1070 nm → 535 nm)
 - ppLN:MgO
 - 150 mW output (fiber coupled)
- Resonant Doubling (535 nm → 267 nm)
 - BBO, w/ cavity stabilization
 - 5 mW output

Ultra-narrow linewidth external cavity laser
- optical feedback from a monolithic cavity (F=200), expected linewidth <10 kHz
- long time stability due to active tracking of the cavity resonance frequency (Hänsch-Couillaud method)

Modulation-Transfer-Spectroscopy Setup
integrated on a micro-optical bench
- micro-integration of a phase modulator
 - chip, mirrors, beam splitters, a fiber coupler,
 - a miniaturized Rb spectroscopy cell and electrical interface

Volume: 80 x 30 x 10 mm³

Acknowledgments

This work is supported by the German Space Agency DLR with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) under grant number 50WM1141.

The iSense project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 250072.

Mandy.Krueger@fbh-berlin.de www.fbh-berlin.de

Typical performances
- DFB laser
 - intrinsic linewidth: < 30 kHz
 - output power: > 150 mW
- ECDL
 - intrinsic linewidth: < 3 kHz
 - output power: > 30 mW
- DFB laser with feedback1
 - intrinsic linewidth: 15.7 Hz
 - output power: > 50 mW

Packaging
- hermetically sealed Kovar housing with optical and electrical feedthroughs

Technology transfer

Compact UV-laser system for 267 nm
- Local Oscillator + Pre-Amplifier (1070 nm)
 - extended cavity concept
 - very narrow free running linewidth
- Phase Modulator + Amplifier (1070 nm)
 - control bandwidth > 1.5 MHz
 - 750 mW output (fiber coupled)
- Single-Pass Doubling (1070 nm → 535 nm)
 - ppLN:MgO
 - 150 mW output (fiber coupled)
- Resonant Doubling (535 nm → 267 nm)
 - BBO, w/ cavity stabilization
 - 5 mW output

Ultra-narrow linewidth external cavity laser
- optical feedback from a monolithic cavity (F=200), expected linewidth <10 kHz
- long time stability due to active tracking of the cavity resonance frequency (Hänsch-Couillaud method)

Modulation-Transfer-Spectroscopy Setup
integrated on a micro-optical bench
- micro-integration of a phase modulator
 - chip, mirrors, beam splitters, a fiber coupler,
 - a miniaturized Rb spectroscopy cell and electrical interface

Volume: 80 x 30 x 10 mm³