Comparison of two concepts for dual-wavelength DBR ridge waveguide diode lasers at 785 nm suitable for shifted excitation Raman difference spectroscopy

B. Sumpf, M. Maiwald, A. Müller, J. Fricke, P. Ressel, F. Bugge, G. Erbert and G. Tränkle

Published in:

Appl. Phys. B, vol. 120, no. 2, pp. 261-269 (2015).

© Springer-Verlag 2015. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the Springer-Verlag.

Abstract:

Two concepts of dual-wavelength 785-nm DBR ridge waveguide (RW) lasers, i.e. RW mini-arrays consisting of two DBR-RW lasers and Y-branch DBR-RW lasers, will be compared with respect to their usability as excitation light sources for shifted excitation Raman difference spectroscopy (SERDS). For both types of devices for each wavelength, output powers up to 215 mW were measured. A stable spectral distance between the laser emissions of the two resonator branches with the targeted value of 0.6 nm, i.e. 10 cm-1, is observed. In the case of the mini-array up to an output power of about 70 mW, the device shows single-mode operation. Although at higher power levels, mode hops and multi-mode operation occur, the emission width smaller than 0.15 nm still meets the requirements for Raman measurements of solids and liquids. Over the whole working range, the spectral distance between the two wavelengths is approximately constant with 0.62 nm. The near field shows two emission spots according to the dimension of the RW and their processed distance of 20 µm. The Y-branch laser shows single-mode operation up to 150 mW with a narrow spectral emission width. At higher powers also, multi-mode operation with an emission width of 0.15 nm occurs. The nearly diffraction- limited emission comes from one output aperture; the far-field emission shows a pronounced asymmetry between the two branches. Both types of devices fulfil the spectral requirements from Raman spectroscopy and SERDS up to 215 mW output power.

Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin, Germany